Collusion in Large Contests

Phil Brookins¹ Paan Jindapon²

¹Darla Moore School of Business University of South Carolina

²Culverhouse College of Business University of Alabama

61st Public Choice Society Annual Meetings March 2024

1/26

Brookins and Jindapon

Collusion in Large Contests

Background

- Cooperation in infinitely repeated games
- The folk theorem
- Grim trigger strategy
- Prisoners' dilemma, Cournot/Bertrand competition, team production

< 1 k

(B)

Our Focus

- Cooperation in large games (multiple players)
- Winner-take-all contests (Tullock)

Brookins and Jindapon

Collusion in Large Contests

PCS 2024

< □ > < □ > < □ > < □ > < □ > < □ >

Theory

- Oligopoly: Green (JET 1980) and Lambson (JET 1984)
- Public good: Pecorino (AER 1998) and Pecorino (J Pub E 1999)

イロト イヨト イヨト

Experiments with strategic complements and substitutes

- Chen and Gazzale (AER 2004)
- Potters and Suetens (REStud 2009)
- Mermer, Müller, and Suetens (JEBO 2021)

Infinitely repeated public-good experiment with 4 players

• Lugovskyy, Puzzello, Sorensen, Walker, and Williams (GEB 2017)

Infinitely repeated contest experiment with 2 players

- Brookins, Ryvkin, and Smyth (EE 2021)
- Deck, Dorobiala, and Jindapon (JESA 2024)

< □ > < □ > < □ > < □ > < □ > < □ >

- There are $n \ge 2$ players in a symmetric standard Tullock contest.
- The contest winner receives v > 0.
- In Nash equilibrium,

$$x_i^e = \left(\frac{n-1}{n^2}\right) v$$

and

$$\pi_i^e = \frac{v}{n^2}$$

for i = 1, ..., n.

7/26

< □ > < □ > < □ > < □ > < □ > < □ >

• If all *n* firms collude by investing $cv < x_i^e$, then

$$x_i^c = cv$$

where
$$c < rac{n-1}{n^2}$$
, and $\pi_i^c = \left(rac{1}{n} - c
ight) v$

for i = 1, ..., n.

Brookins and Jindapon

Collusion in Large Contests

PCS 2024

< □ > < □ > < □ > < □ > < □ >

Grim Trigger strategy with group punishment

- I begin with investing cv, where $c < \frac{n-1}{n^2}$, in the contest.
- I'll keep investing *cv* as long as I observe that the total investment does not exceed *ncv*.
- If I observe that the total investment exceeds ncv, then I'll invest $\frac{n-1}{n^2}v$ forever after.

Such a coordination can be sustained if

$$\left(\frac{1}{1-\delta}\right)\pi_{i}^{c}\geq\pi_{i}^{d}+\left(\frac{\delta}{1-\delta}\right)\pi_{i}^{e}$$

where π_i^d is player *i*'s defect payoff.

• In the defect period, suppose $x_j = cv$ for all $j \neq i$. Then,

$$\pi_i^d = \left[1 - \sqrt{c(n-1)}\right]^2 \mathsf{v}$$

• Let $\bar{\delta}$ be the minimum discount factor supporting the collusion with the level of effort cv. Then,

$$ar{\delta}(c) = rac{n\left(\sqrt{n-1} - n\sqrt{c}
ight)^2}{n^2\left[1 - \sqrt{c(n-1)}
ight]^2 - 1}.$$

• For c = 0 (most efficient),

$$\bar{\delta}(0) = \frac{n}{n+1}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

We find that

- $\bar{\delta}(c)$ is strictly decreasing in c
- $\lim_{c\to 0} \overline{\delta}(c) = \frac{n}{n+1}$
- $\lim_{c \to x_e} \bar{\delta}(c) = 0$

Therefore

- Given any $\delta \in (0,1)$, there exists a value of c such that the collusion can be sustained.
- Given any c ∈ [0, x^e), there exists a value of δ such that the collusion can be sustained.

- 4月 ト - 3 ト - 4 3 ト

PCS 2024

< □ > < □ > < □ > < □ > < □ >

Design

- Standard Tullock Contest with 4 players'
- 2 by 2:
 - Infinitely repeated game VS Finite number of contests
 - High δ VS Low δ
- TIDE Lab, University of Alabama

A 🖓

(B)

III. Experiment

Parameters

- Endowment: 120 ECU
- Prize: 120 ECU
- High $\delta = 0.8$
- Low $\delta = 0.5$
- Similar to Brookins, Ryvkin, and Smyth (2021) except
 - *n* = 4
 - Nash Equilibrium in stage game: 22.5 ECU

< □ > < □ > < □ > < □ > < □ > < □ >

III. Experiment

Treatments

1 Infinite & High δ (10 supergames with $\delta = 0.8$):

- 3 different sequences (63, 51, 48 periods)
- 3 sessions (12, 16, 16 subjects)
- 75 minutes, \$20-\$70 per subject
- 2 Infinite & Low δ (10 supergames with $\delta = 0.5$):
 - 3 different sequences (14, 15, 14 periods)
 - 3 sessions (16, 16, 16 subjects)
 - 45 minutes, \$10-\$20 per subject
- Finite & High δ (50 periods):
 - Coming soon.
- Finite & Low δ (20 periods):
 - Coming soon.

< □ > < □ > < □ > < □ > < □ > < □ >

III. Experiment - Average effort by treatment

Data: all periods orange: $\delta = 0.8$, blue: $\delta = 0.5$

Brookins and Jindapon

Collusion in Large Contests

PCS 2024

III. Experiment - Average effort by session ($\delta = 0.8$)

Brookins and Jindapon

Collusion in Large Contests

PCS 2024

III. Experiment - Average effort by session ($\delta = 0.5$)

PCS 2024

III. Experiment - Average effort by treatment

Data: first period of each supergame orange: $\delta = 0.8$, blue: $\delta = 0.5$

Brookins and Jindapon

Collusion in Large Contests

III. Experiment - Learning by treatment

Dependent variable: Effort Fixed effects: subjects Data: all periods VS periods 1-14

	All Periods		Periods 1 - 14	
	$\delta=$ 0.8	$\delta=$ 0.5	$\delta = 0.8$	$\delta=$ 0.5
Constant	39.473***	59.029***	47.552***	58.986***
	(1.496)	(3.471)	(3.931)	(3.579)
Period	-0.6994***	-3.8353***	-3.2312***	-3.7933***
	(0.1189)	(1.0359)	(1.2058)	(1.0975)
Period ²	0.0078***	0.1350**	0.1589**	0.1317*
	(0.0020)	(0.0655)	(0.0782)	(0.0712)
Number of:				
total observations	2,340	688	1,600	672
groups	44	48	160	48
observations per group	48/51/63	14/15/14	14	14

PCS 2024

イロト イヨト イヨト

III. Experiment - Learning by treatment

Dependent variable: Effort Fixed effects: subjects Data: first period of each supergame

	$\delta = 0.8$	$\delta=$ 0.5	$\delta = 0.8$	$\delta = 0.5$
Constant	40.395***	59.641***	39.670***	54.890***
	(3.261)	(3.672)	(2.486)	(2.413)
Period	-0.5523**	-4.1019***		
	(0.2402)	(1.1102)		
Period ²	0.0033	0.1419**		
	(0.0040)	(0.0714)		
Supergame			-2.0821***	-2.8535***
			(0.4006)	(0.3889)
Number of:				
total observations	440	480	440	480
groups	44	48	44	48
observations per group	10	10	10	10

III. Experiment - Collusion ($\delta = 0.8$ VS $\delta = 0.5$)

Dependent variable: Effort Method: OLS, SE clutered by subject Data: all periods/periods 1-14/First period of each supergame

	All periods	Periods 1-14	First period
			of supergame
Constant	51.410***	59.631***	54.784***
	(3.590)	(4.622)	(3.801)
Period	-0.4813	-2.8382***	-0.0737
	(0.3068)	(0.8338)	(0.4449)
Period ²	0.0088**	0.1403**	0.0035
	(0.0039)	(0.0535)	(0.0054)
Supergame	-1.5727**	-1.5892**	-2.7799***
	(0.6469)	(0.7841)	(0.8256)
$\mathbb{1}[\delta = 0.8]$	-11.284***	-11.491**	-12.869**
	(5.362)	(5.400)	(6.128)
Observations	3,028	1,288	920
R-squared	0.0535	0.0433	0.0839

Brookins and Jindapon

PCS 2024

イロト イヨト イヨト

IV. Discussion

Lim, Matros, and Turocy (JEBO 2014)

g. 3. Mean expenditure by period, aggregated across sessions, for each group siz

Brookins and Jindapon

Collusion in Large Contests

PCS 2024

IV. Discussion

Brookins, Ryvkin, and Smyth (EE 2021)

IV. Discussion

Brookins, Ryvkin, and Smyth (EE 2021)

Brookins and Jindapon

Collusion in Large Contests

PCS 2024

Thank You!

pjindapon@ua.edu

Brookins and Jindapon

Collusion in Large Contests