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Instead of managing your IP to

exclude rivals, manage your IP

to profit from others’ use of it.

Henry Chesbrough (2003)

1 Introduction

Chesbrough (2006) formally defines open innovation as the use of purposive inflows and

outflows of knowledge to accelerate internal innovation and expand the markets for external

use of innovation. Thus, there are two facets to open innovation: the outside-in aspect,

where external technologies are brought into a firm’s own innovation process, and the

inside-out aspect, where a firm’s technology is incorporated into other firms’ innovation

processes.

In this paper, we propose a theoretical framework to analyze open innovation among

firms in a research and development (R&D) competition. We find that an open innovation

coalition always exists in equilibrium whenever there is a firm with an advantage in R&D

technology. However, the size of such a coalition and the structure of the corresponding li-

cense contract depend on the number of firms in the competition and the relative advantage

of the technology shared within the coalition.

Our theoretical prediction that the technologically advanced firm will always form a

coalition with at least one other firm with an inferior R&D technology is supported by em-

pirical studies of open innovation in various industries. In his seminal books, Chesbrough

(2003, 2006) uses case studies from Xerox, IBM, Intel, Lucent Technologies, Millennium

Pharmaceuticals, Procter & Gamble, and Air Products and Chemicals to demonstrate how

open innovation brought success to the R&D businesses of these firms. Other examples of

technology licensing between rivals documented in the literature include IBM and Apple

(Hagedoorn, Carayannis and Alexander, 2001), Nokia and Motorola (Dittrich and Duys-

ters, 2007), Sony and Samsung (Gnyawali and Park, 2011), and German car manufacturers

(Ili, Albers and Miller, 2010). In addition to the aforementioned specific case studies, other
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empirical studies provide a bigger picture of open innovation. For example, Cassiman and

Veugelers (2006) use survey data from Belgium to show that internal R&D and external

knowledge acquisition are complementary in innovation activities. Aschhoff and Schmidt

(2008) use survey data from Germany to show that R&D cooperation with competitors

leads to greater cost reductions that are attributable to innovative processes. Based on

a Korean innovation survey, Lee, Park and Bae (2017) find evidence that adopting exter-

nal technology through licensing-in does not always enhance innovative performance; the

effectiveness of licensing-in varies with technological regimes.

For the framework of our analysis, we adopt a Tullock contest (Tullock, 1980) where

there is only one winner and the probability of winning the contest for each firm is the ratio

of the firm’s R&D investment to the total R&D investment by all of the competing firms.

Thus, the more R&D investment, the more likely to win the contest. However, the contest

winner is not necessarily the firm that invests the most, that is, the contest winner-deciding

process is not perfectly discriminating. Our analysis is the first to incorporate licensing in

the canonical model of R&D competition. Specifically, we assume that one of the competing

firms has an advantage in its R&D technology and this firm (i.e., the licensor) has an option

to license out such a technology to some or all of the other firms (i.e., the licensees) before

the contest begins.1 Such a contract is nonexclusive so the licensor still has access to the

technology, however, the licensees are not allowed to share or transfer the technology to

any other firms.

We allow the licensor to choose any number of licensees to form a coalition and derive

the optimal license contract between the licensor and licensees in the coalition. Such a

license contract may consist of a fixed fee which is paid before the contest begins and a

contingent fee which is paid only if the licensee wins the contest. We assume this two-part

tariff structure to capture the two most common governance modes of technology alliance

in the real world: a fixed compensation from a contractual agreement and a contingent

compensation from an equity joint venture (Pisano, 1989; Oxley, 1999). Alternatively, the

contingent component for the contract can be interpreted as a grant-back clause, which

1The R&D technology licensed and shared in our model is called generative appropriability in Ahuja,
Lampert and Novelli (2013).
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allows the licensor to reap additional benefit if its licensee wins the contest (Leone and

Reichstein, 2012; Laursen et al., 2017).

Our model features both inside-out and outside-in aspects of open innovation. For

the inside-out facet, the technologically advanced firm faces the licensing dilemma (Arora

and Fosfuri, 2003) which is a trade-off between the additional revenue generated in the

form of licensing payments and the erosion of (expected) profits because the licensees

have become stronger competitors.In our setting where the contest outcome is uncertain

(imperfectly discriminating), a contingent fee serves as a hedging instrument for the licensor

since the licensor receives a portion of the contest prize from the licensee even when it is

not the contest winner. For the outside-in facet, each licensee compares the benefit and

cost of licensing in the R&D technology. While the incoming technology can increase the

probability of winning the contest, the firm has to pay a fixed fee to the licensor irrespective

of whether its innovation succeeds or not, and also has to give up a portion of the contest

prize in the form of contingent license payment after its innovation succeeds.Given the

tension between the licensor and licensee in terms of making a licensing contract, we find

that there exists a combination of fixed and contingent fees that is acceptable to both

the licensor and any number of licensees and, thus, a coalition of open innovation can be

formed endogenously. An implication of such a coalition from our model is the ability to

deter firms that are not in the coalition from competing. Arora (1997) and Arora, Fosfuri

and Gambardella (2001) provide various business cases of firms using technology licensing

to control competition and limit entry.

To derive the fixed and contingent fees to be chosen in a given coalition, we adopt two

approaches: (1) assume that all the firms in the coalition have equal bargaining power

and employ a Nash bargaining solution concept or (2) assume that the licensor has all

the bargaining power and make a take-it-or-leave-it offer the licensees.2 Based on the

contractual outcomes for every possible coalition, we further consider an optimal coalition

structure from the viewpoint of the licensor. More specifically, we model open innovation

in R&D competition in three stages. In stage 1, a coalition is formed. In stage 2, the license

2See Sakakibara (2010) for an estimation of bargaining power between technology licensors and licensees
in Japan.
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fee is determined. In stage 3, the R&D contest begins.

We find that the equilibrium number of firms in the coalition depends on three factors:

the total number of firms in the contest, the bargaining power of each firm in the coalition,

and whether the technology of the advanced firm is radical. We define radical technology

as the advanced firm’s technology such that, if shared with at least one licensee, then all

other firms (non-licensees) will drop out off the contest. If the total number of firms is

four or fewer, then the advanced firm will include all other firms in the coalition, i.e., form

a grand coalition. If the total number of firms is five or more and the advanced firm’s

technology is radical, then the size of the coalition depends on the license fee bargaining

process. If the advanced firm is the only one with bargaining power, then it will form a

grand coalition. If all firms in the coalition have equal bargaining power, then the advanced

firm will include only one other firm in the coalition, i.e., form a two-firm coalition. We

find that firms receive a higher (lower) expected profit than in status quo if they are in

(not in) the coalition. This negative impact on firms outside the coalition is consistent with

empirical finding in Oxley, Sampson and Silverman (2009).

We discuss the related literature in Section 2. We describe the three-stage contest in

Section 3. Since we solve the game backward, we present equilibrium investment in the

contest (stage 3), the license fee solution (stage 2), and the optimal licensing coalition

(stage 1) in Sections 4, 5, and 6, respectively. We conclude in Section 7.

2 Related Literature

The analysis in this paper provides a bridge between two strands of literature, technology

licensing mechanism and R&D network formation. To the best of our knowledge, this is

the first theoretical paper that allows for endogenous network formation and knowledge

sharing via licensing in a competition for innovation.

2.1 Technology licensing mechanism

The vast majority of the theoretical literature on technology licensing focuses on optimal

fee structure or licensing mechanism in an oligopoly setting (see, for example, Katz and
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Shapiro (1985, 1986) and Kamien and Tauman (1986)). While we analyze cost-reducing

technology licensing among R&D firms in an innovation competition, the analyses under

oligopoly that are closest to us are Sen and Tauman (2007) and Fan, Jun and Wolfstetter

(2018). Similarly to our model, both papers assume that one of the competing firms has a

cost-reducing technology and allow such a firm to choose the number of its licensees. While

we use both Nash Bargaining and take-it-or-leave-it solutions and to derive the license fee

in equilibrium, Sen and Tauman (2007) use the bids of auction winners and Fan, Jun and

Wolfstetter (2018) let the firm with the technology make a take-it-or-leave-it offer. Fan, Jun

and Wolfstetter (2018) find that the technology advanced firm will license its technology

out to all other firms and Sen and Tauman (2007) obtain the same result in most cases. In

contrast, we find that the technology advanced firm will make all other firms its licensees

if the total number of firms is 4 or less. If the total number of firms is greater than 4, then

the number of licensees depends on the impact of the technology.

Most fee structures studied in the literature are a fixed fee, a royalty rate, or a combina-

tion of both which is called a two-part tariff. In our model, we assume two-part tariff that

consists of a fixed component which is paid up-front and a contingent component which

is paid only if the licensee wins the competition. The contingency in the fee structure

accommodates all parties involved in the contract; the licensees do not have to pay the

licensor if they do not win the contest and the licensor has an opportunity to be rewarded

(by the winning licensee) even when it does not win the contest. These effects are similar to

grant-back clause which allows the licensor to reap additional benefits from the licensee’s

future innovation that stems from the licensor’s knowledge. van Dijk (2000) and Choi

(2002) introduce a grant-back clause to a licensing contract between two competing R&D

firms. While van Dijk (2000) assumes a zero licensing fee, Choi (2002) allows the licensor

to make a take-it-or-leave-it offer to the licensee. Both papers show a grant-back clause

will reduce R&D investment and improve welfare of both firms.

An alternative interpretation of the contingent component of the licensing fee in our

model is partial equity ownership (PEO), as analyzed in Ghosh and Morita (2017). In their

model, the technology recipient partially loses its ownership (i.e., a portion of its profit)
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to the firm that provides a low-cost technology in production. While Ghosh and Morita

(2017) impose the condition that the advanced firm can share its knowledge with only one

of its competitors, we allow the the advanced firm to choose the number of technology

recipients and, therefore, obtain PEO in multiple firms. Moreover, the contingent fee rate

in our model, which is equivalent to the PEO parameter in Ghosh and Morita (2017), is

determined endogenously using a Nash Bargaining solution.

d’Aspremont, Bhattacharya and Gérard-Varet (2000) analyze bargaining over interim

knowledge, similar to technology used in R&D in this paper, but they focus on the amount

of knowledge disclosed between two innovators, i.e., from the leading to the lagging firms.

In a more closely related work, Clark and Konrad (2008) model a two-player two-stage R&D

competition where the two firms compete in parallel Tullock’s contests (to win patents for

various innovative attributes) in stage 1 and then negotiate over the patents so that one

of the firms has patents for all of the attributes in stage 2. Clark and Konrad (2008)

use a Nash bargaining solution to derive each firm’s share of the surplus from production.

Since we focus on bargaining over technology used in an innovation competition (not in

production of final products), the negotiations among all the firms in the coalition in our

model occur before the contest begins. Similar Nash bargaining concept has been applied

to derive licensing fees between an innovator and a producer (Spulber, 2016) and between

two producers in a duopoly (Kishimoto and Muto, 2012).

2.2 R&D network formation

Goyal and Moraga-González (2001) is the first paper to formally analyze endogenous net-

work formation for R&D cooperation in oligopoly (see, for example, d’Aspremont and

Jacquemin (1988) and Kamien, Muller and Zang (1992)). Like Goyal and Moraga-González

(2001), we let firms form a network of coalition in the first stage of the game. A key dif-

ference between the two models is that our network structure is bipartite because we focus

on technology transfers between two types of firms (i.e., from a low-cost firm to a high-cost

firm). While Goyal and Moraga-González (2001) show that a complete network is stable,

we find that a complete bipartite network might not be stable when the number of firms is
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large and the transferred technology is radical.

Similarly to the patent race in Joshi (2008) and the Tullock contest in Grandjean,

Tellone and Vergote (2017), the return from the R&D investment for each firm in our

model is uncertain, and a greater R&D investment implies a greater probability of success.

While firms in Joshi (2008) compete on behalf of their team, and each firm in the winning

team shares an equal profit, firms in Grandjean, Tellone and Vergote (2017) and this paper

compete individually, even though they are in a coalition.3 Nonetheless, we find that a

coalition may serve as a barrier to entry, because the high-cost firms that are not in a

coalition will drop out of the competition. This result is comparable to those found in

Marinucci and Vergote (2011) and Petrakis and Tsakas (2018).

3 The Model

There are n ≥ 3 R&D firms taking part in a competition for innovation in which a fixed

prize R > 0 (i.e., a patent right) is awarded to the winner of the competition.4 Each

firm makes a costly effort (i.e., an R&D investment) to improve the odds of winning the

competition. We let N ≡ {1, 2, ..., n} be the set of all R&D firms and denote firm i’s

effort by xi ≥ 0. We assume that firm i’s marginal cost of effort is ci, where c1 = 1 and

ci = c > 1 for i = 2, ..., n. That is, firm 1 is the only low-cost firm and all other firms

have a higher marginal cost of effort. We assume that all firms simultaneously choose their

effort levels and each firm’s probability of winning the competition follows the standard

Tullock contest success function. Specifically, firm i’s probability of winning is the ratio

xi/X, where X =
∑n

j=1 xj . If X = 0, the winning probability of firm i is 1/n for all i.

We allow firms to interact in two stages prior to the contest. In stage 1, firm 1 forms

a coalition with m other firms where m ∈ {0, 1, 2, ..., n − 1}. Each of these m firms will

be granted access to firm 1’s low-cost technology so that their marginal cost of effort in

3Even though firms can form a coalition before they compete, the contests in Grandjean, Tellone and
Vergote (2017) and in this paper are different from group contests where players compete on behalf of their
group. See, for example, Baik and Shogren (1995), Sánchez-Pagés (2007), and Lee and Kim (2022).

4We omit the case n = 2 because the results are relatively less interesting; there are only two possibilities:
a coalition exists or does not exist in equilibrium and when it does, there will be exactly two firms in the
coalition and no other firms not in the coalition.
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the contest becomes unity. In return, these technology recipients agree to pay firm 1 a

fixed fee and a contingent fee that are proportional to R. Specifically, for φ and ρ ∈ [0, 1],

each of these firms pays firm 1 φR upon receiving the technology and ρR only if it wins

the contest. In stage 2, the firms in the coalition choose φ and ρ through negotiation. We

consider two scenarios in selecting φ and ρ: (1) all the firms in the coalition negotiate with

equal bargaining power and (2) firm 1 is the only one with bargaining power. We derive the

Nash bargaining (NB) solution in the first scenario and firm 1’s optimal take-it-or-leave-it

(TIOLI) offer in the latter.

We explain how the game proceeds in detail below.

3.1 Stage 1

The game begins with firm 1 forming a coalition with the objective of sharing its R&D tech-

nology with m other firms through a nonexclusive and nontransferable license agreement.

Firm 1 is also allowed to remain in autarky, i.e., there is no coalition in the competition.

Since firms 2, ..., n are identical, without loss of generality, we let the coalition only include

firms 1, 2, ...,m+ 1 so that firm 1’s choice in stage 1 is the value of m ∈ {0, 1, ..., n−1}. We

let Cm denote the set of firms {1, 2, ...,m + 1} in the coalition. Alternatively, we can say

that firm 1 chooses a bipartite network g, i.e., a set of edges between firm 1 and other firms,

from the set {∅, {12}, {12, 13}, ...{12, 13, ..., 1n}} because of the 1-to-1 correspondence be-

tween m and g. If m = n−1, then we say that firm 1 forms a grand coalition or a complete

bipartite network.

3.2 Stage 2

After a value of m is chosen in stage 1, the licensor and licensees negotiate φ and ρ in stage

2. In the first scenario where all the firms in the coalition have equal bargaining power,

they are assumed to employ the NB solution in choosing φ and ρ. Namely, they choose φ
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and ρ ∈ [0, 1] that maximize the Nash product

W (φ, ρ|m) ≡ Πm+1
i=1 [πei (φ, ρ|m)− πai ] (1)

subject to πei (φ, ρ|m) ≥ πai for all i ∈ Cm,

where πei (φ, ρ|m) denotes firm i’s expected payoff in the equilibrium of the contest as a

function of φ and ρ for the given m 6= 0, and πai denotes firm i’s disagreement payoff or the

expected payoff in the equilibrium of the contest without a coalition (i.e., in autarky). In

the other scenario where bargaining power is given to only firm 1, it is assumed to employ

the TIOLI offer. Firm 1 then chooses φ and ρ ∈ [0, 1], which maximizes its expected payoff

πe1(φ, ρ|m) (2)

subject to πei (φ, ρ|m) ≥ πai for all i ∈ Cm.

3.3 Stage 3

Given the m, φ, and ρ chosen in the previous stages, all the firms choose their effort levels

to win the contest. We let x−i be a vector of effort levels chosen by all firms except i. Each

firm’s expected payoff in stage 3 is then given by

π1(x1|x−1) =
x1
X
R− x1 +mφR+

m+1∑
i=2

xi
X
ρR, (3)

πi(xi|x−i) =
xi
X

(1− ρ)R− xi − φR, (4)

πj(xj |x−j) =
xj
X
R− cxj (5)

for i = 2, ...,m + 1 and j = m + 2, ..., n. Note that firm i is a technology recipient whose

marginal cost is reduced to 1, whereas firm j’s marginal cost remains c. We assume that all

of the above is common knowledge among the firms and use a subgame perfect equilibrium

as our solution concept. Figure 1 summarizes how the game proceeds.

Solving the game backwards, we first derive equilibrium contest outcomes in stage 3 in

the next section. Then, we derive the license fees to be chosen within the coalition in stage
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1 2 3
firm 1

chooses m

license fee

bargaining

firms

invest

declare

the winner

Figure 1: The timeline of the game

2, and finally, get the optimal value of m for the coalition in Sections 5 and 6, respectively.

4 Equilibrium Effort in Stage 3

We let Xa denote the total investment in autarky (m = 0) equilibrium and let Xe(ρ|m)

denote the total investment in equilibrium for the given φ and ρ ∈ [0, 1] in stage 2 and

given m ∈ {1, ..., n − 1} in stage 1. Note that the fixed component of the license fee (φ)

does not affect the total investment in equilibrium.

Proposition 1 In autarky, all firms are active in equilibrium and the total investment in

equilibrium is given by

Xa =

[
n− 1

(n− 1)c+ 1

]
R. (6)

Suppose that a coalition Cm = {1, 2, ...,m+ 1} is formed in stage 1.

(i) If m = n − 1, or m < n − 1 and mc−m−1
mc < ρ < (n−m−1)(c−1)+1

(n−m−1)c+1 , then all firms are

active in equilibrium and

Xe(ρ|m) =

[
m(1− ρ) + (n−m− 1)

m+ (n−m− 1)c+ 1

]
R. (7)

(ii) If m < n− 1 and ρ ≤ mc−m−1
mc , then only firms in Cm are active in equilibrium and

Xe(ρ|m) =

[
m(1− ρ)

m+ 1

]
R. (8)

(iii) If m < n− 1 and ρ ≥ (n−m−1)(c−1)+1
(n−m−1)c+1 , then only firm 1 and the firms not in Cm are

active in equilibrium and

Xe(ρ|m) =

[
n−m− 1

(n−m− 1)c+ 1

]
R. (9)
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Proof. See Appendix A.1.

Two comparative statics results of Proposition 1 are presented in Remarks 1 and 2.

Remark 1 Consider Xe(ρ|m) derived in Proposition 1.

(i) For a given m, Xe(ρ|m) is strictly decreasing (constant) in ρ if ρ < (>) (n−m−1)(c−1)+1
(n−m−1)c+1 .

(ii) For a given ρ, Xe(ρ|m) is strictly increasing (decreasing) in m if ρ < (>) (n−1)(c−1)
(n−1)c+1 .

Proof.

(i) In case (i) of Proposition 1, ∂X
e

∂ρ = − m
m+(n−m−1)c+1R < 0. In case (ii) of Proposition 1,

∂Xe

∂ρ = − m
m+1R < 0. In case (iii) of Proposition 1, ρ > (n−m−1)(c−1)+1

(n−m−1)c+1 and ∂Xe

∂ρ = 0.

(ii) In case (i) of Proposition 1, ∂Xe

∂m = (n−1)(c−1)−[(n−1)c+1]ρ
[m+(n−m−1)c+1]2

R ≷ 0 if and only if ρ ≶
(n−1)(c−1)
(n−1)c+1 . In case (ii) of Proposition 1, ∂Xe

∂m = 1−ρ
(m+1)2

R > 0. In case (iii) of Proposi-

tion 1, ∂Xe

∂m = − 1
[(n−m−1)c+1]2

R < 0. �

Remark 1 suggests that, across all three cases discussed in Proposition 1, the total

investment in equilibrium weakly decreases in ρ and weakly increases in m. Despite the

fact that there are three possible cases in equilibrium, it will become obvious that case

(iii), where the firms in the coalition do not participate in the contest, is not relevant.

Such a case cannot be the outcome of a subgame-perfect equilibrium, because, in this

case, the contingent fee is so high that all of the technology recipients do not have an

incentive to compete if they join the coalition. Thus, our focus is on cases (i) and (ii), and

the next remark is derived from the critical value of ρ that differentiates the two cases.

While all firms in the coalition have access to the advanced technology in both cases, the

firms not in the coalition still compete using their inferior technology in case (i) but leave

the competition in case (ii). We formalize the outcome of case (ii) by deeming firm 1’s

technology “radical” because if it is adopted by all other firms in the coalition for a given

license fee, the inferior firms not in the coalition will leave the competition. As a result,

firm 1 can deter all outsiders from competing by sharing its superior technology only with

the firms in the coalition.
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Definition 1 Given m ∈ {1, ..., n − 2}, we say that firm 1’s technology is radical with

respect to m and ρ, if each firm i /∈ Cm does not participate in the competition whenever a

coalition Cm is formed and the contingent rate of the coalition’s license fee is ρ.

The objective of this definition is to derive the minimum value of c for a given pair of

m and ρ such that the firms outside the coalition will not participate in the contest. We

show below that such a value of c is increasing in ρ and decreasing in m.

Remark 2 Define

c̄(ρ|m) ≡ m+ 1

m(1− ρ)
. (10)

Firm 1’s technology is radical with respect to m and ρ if and only if c ≥ c̄(ρ|m).

(i) For a given m, c̄(ρ|m) is increasing in ρ.

(ii) For a given ρ, c̄(ρ|m) is decreasing in m.

Proof. This threshold value of c is derived from the condition ρ ≤ mc−m−1
mc stated in

Proposition 1 (ii). The properties of c̄(ρ|m) follow immediately. �

Next, we let xei (ρ|m) denote firm i’s investment in equilibrium. We find that when only

firms in the coalition are active in equilibrium, each firm in the coalition invests the same

amount and therefore has the same probability of winning the contest.

Remark 3 If m = n− 1 or c ≥ c̄(ρ|m), then

xei (ρ|m) =
m(1− ρ)

(m+ 1)2
R (11)

for all i ∈ Cm, and the probability of winning the contest in equilibrium is 1
m+1 for all firms

in Cm.

Proof. Given m = n − 1, the expression for Xe in (7) is the same as Xe in (8), where

m < n− 1 and c ≥ c̄(ρ|m). Given Xe in (8), firm 1’s probability of winning, given by (38),

and firm i’s probability of winning for i = 2, ...,m+ 1, given by (39), are equal to 1
m+1 . �
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Example: n = 3

As an example, consider a contest with three firms. Based on Proposition 1, we obtain the

following expression for the aggregate investment in equilibrium for given values of c, m,

and ρ.

Xe(ρ|m) =



(
2

2c+1

)
R if m = 0(

1−ρ
2

)
R if m = 1 and ρ ≤ c−2

c(
2−ρ
c+2

)
R if m = 1 and c−2

c < ρ < c
c+1(

1
c+1

)
R if m = 1 and ρ ≥ c

c+1(
2−2ρ
3

)
R if m = 2

(12)

We plot Xe on ρ for all possible values of m given c = 3
2 and c = 3 in Figure 2. For

c = 3
2 , case (ii) ρ ≤ c−2

c is not possible, case (i) and case (iii) arise when ρ is smaller and

greater than 3
5 , respectively. In Figure 2a, Xe is increasing in m if and only if ρ is less than

1
4 . In Figure 2b, c = 3 and Xe is increasing in m if and only if ρ is less than 4

7 . Using

Xe derived for the case n = 3, we can calculate firm i’s effort level xei (ρ|m) and expected

payoff πei (φ, ρ|m) for i = 1, 2, 3 for each case as in Table 1. As suggested by Remark 3,

xe1(ρ|2) = xe2(ρ|2) = xe3(ρ|2) and xe1(ρ|1) = xe2(ρ|1) in case (ii) so that each firm in the

coalition has an equal probability of winning. We use the information in Table 1 to derive

the license fees that are a bargaining solution in stage 2 as a numerical example in the

following section.

5 Bargaining Solutions in Stage 2

In the previous section, we derive an equilibrium for a subgame appearing in stage 3, given

the m chosen in stage 1 and licensing contract (φ, ρ) determined in stage 2. In this section,

we derive solutions of the licensing contract for the given value of m ∈ {1, ...n − 1} with

the two bargaining solution concepts: (1) all firms in the coalition adopt an NB solution

and (2) firm 1 plays a TIOLI strategy.
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Figure 2: Total effort in equilibrium for n = 3

m = 0 m = 1 m = 1 m = 1 m = 2

(autarky) case (i) case (ii) case (iii)

xe1(ρ|m) 2(2c−1)R
(2c+1)2

[c(1−ρ)2+ρ](2−ρ)R
(c+2)2(1−ρ)

(1−ρ)R
4

cR
(c+1)2

2(1−ρ)R
9

xe2(ρ|m) 2R
(2c+1)2

[c(1−ρ)−ρ](2−ρ)R
(c+2)2(1−ρ)

(1−ρ)R
4 0 2(1−ρ)R

9

xe3(ρ|m) 2R
(2c+1)2

[2−c(1−ρ)](2−ρ)R
(c+2)2

0 R
(c+1)2

2(1−ρ)R
9

πe1(φ, ρ|m) (2c−1)2R
(2c+1)2

(c+ρ)2R
(c+2)2

+ φR (1+3ρ)R
4 + φR c2R

(c+1)2
(1+8ρ)R

9 + 2φR

+ [c(1−ρ)−ρ](2−ρ)ρR
(c+2)2(1−ρ)

πe2(φ, ρ|m) R
(2c+1)2

[c(1−ρ)−ρ]2R
(c+2)2(1−ρ) − φR

(1−ρ)R
4 − φR 0 (1−ρ)R

9 − φR
πe3(φ, ρ|m) R

(2c+1)2
[2−c(1−ρ)]2R

(c+2)2
0 R

(c+1)2
(1−ρ)R

9 − φR

Table 1: Equilibrium effort and payoff for each firm for n = 3

The NB solution solves the following problem:

max
φ,ρ

W (φ, ρ|m) ≡ Πm+1
i=1 [πei (φ, ρ|m)− πai ]

s.t. πei (φ, ρ|m)− πai ≥ 0 for all i ∈ Cm,

0 ≤ φ ≤ 1, and 0 ≤ ρ ≤ 1, (13)

where the condition πei (φ, ρ|m)−πai ≥ 0 is the participation constraint of each firm i in the
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coalition. On the other hand, firm 1’s TIOLI solution solves the following problem:

max
φ,ρ

πe1(φ, ρ|m)

s.t. πei (φ, ρ|m)− πai ≥ 0 for all i ∈ Cm,

0 ≤ φ ≤ 1, and 0 ≤ ρ ≤ 1. (14)

For a given value of m ∈ {1, ..., n − 1} in stage 1, we solve the two problems above

while using the equilibrium outcomes drawn by Proposition 1. We let
(
φ̂(m), ρ̂(m)

)
and(

φ̃(m), ρ̃(m)
)

denote the NB and TIOLI solutions, respectively, and analyze the two general

cases, m = n− 1 and m ≤ n− 2, separately below.

5.1 The case m = n− 1

This case implies that a grand coalition forms in stage 1, i.e., the network structure chosen

by firm 1 is complete bipartite. Given m = n− 1, the equality participation constraint of

each firm (defined in detail below) is linear in φ and ρ so that the NB and TIOLI solutions

can be obtained explicitly and intuitively. We obtain the following results.

Proposition 2 Suppose that a complete bipartite network is formed in stage 1.

1. The Nash bargaining solution in the subgame starting in stage 2, given m = n− 1, is

φ̂(m) = 0 and ρ̂(m) =
(n− 1)(c− 1)[(n− 1)(n+ 1)(c− 1) + 4n]

(n+ 1)[(n− 1)c+ 1]2
. (15)

2. The TIOLI solution in the subgame starting in stage 2, given m = n− 1, is

φ̃(m) = 0 and ρ̃(m) =
(n− 1)(c− 1)[(n− 1)(c+ 1) + 2]

[(n− 1)c+ 1]2
. (16)

Proof. See Appendix A.2.

If firm 1 shares its advanced technology with all other firms, i.e., m = n−1, the fixed fee

component of the license will be zero regardless of whether it is the NB or TIOLI solution,
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and the NB contingent rate will be strictly smaller than the TIOLI contingent rate. The

fact that ρ̃(n− 1) > ρ̂(n− 1) can be intuitively explained by the relative bargaining power

of firm 1 between TIOLI and NB. The reason why φ̃(n− 1) = φ̂(n− 1) = 0 is as follows.

There are two possible outcomes when m = n−1, i.e., either firm 1 or one of the licensees

is the winner of the R&D competition. As ρ increases, firm 1’s expected payoff increases

because of the increase in the contingent fee transferred from one of the licensees when firm

1 does not win the contest. As φ increases, firm 1’s expected payoff increases regardless

of who wins the contest. Since firm 1’s marginal effects from ρ and φ are (n+1)(n−1)
n2 R

and (n − 1)R, respectively, the marginal rate of substitution between φ and ρ is n2

n+1 .

For a licensee, as ρ increases, its expected payoff decreases because of the increase in the

contingent fee transferred to firm 1 in case it wins the contest. However, an increase of

φ decreases each licensee’s expected payoff regardless of the outcome of the contest. The

marginal effects with respect to ρ and φ for each licensee are − 1
n2R and −R, respectively,

so the marginal rate of substitution between φ and ρ is n2. Since each licensee is willing

to accept a larger increase in ρ for a fixed reduction in φ than its counterpart, all parties

can improve their own expected payoff by substituting φ with ρ at a rate between the two

marginal rates of substitution. As a result, the bargaining procedure entices them to choose

φ = 0.

Example: n = 3

Given πei (φ, ρ|2) and πai , for i = 1, 2, 3, derived for the case n = 3, we define firm i’s equality

participation constraint by PCi ≡ {(φ, ρ)|πei (φ, ρ|m)− πai = 0}. Based on Table 1, we have

PC1 : ρ =
(4c− 1)(c− 1)

(2c+ 1)2
− 9

4
φ (17)

and

PC2 & PC3 : ρ =
4(c+ 2)(c− 1)

(2c+ 1)2
− 9φ. (18)

Thus, the relationship between φ and ρ for each PCi is linear. If we plot each PCi on

the (φ, ρ) Cartesian plane, we will find that PC1 is flatter than PC2 (which is the same
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Figure 3: NB and TIOLI licensing fees given n = 3 and m = 2

as PC3) and that the intersection of PC1 and PC2 lies strictly in the first quadrant. As a

result, the feasible set of (φ, ρ) according to (13) is nonempty. For example, we plot PCi

for i = 1, 2, 3 given c = 3
2 in Figure 3a. The feasible set is the triangular region above PC1

and below PC2.

Given the feasible region, we seek to find a couple (φ, ρ) maximizing W (φ, ρ|2). First, we

claim that any interior point within the feasible region cannot be a solution and, therefore,

φ̂(2) = 0. The reason is as follows. Pick an arbitrary interior point of (φ
′
, ρ
′
) from the

feasible region in Figure 3a. We can then draw the isopayoff line of firm 1 that passes

through (φ
′
, ρ
′
), i.e.,

{
(φ, ρ)|πe1(φ, ρ|2)− πe1(φ

′
, ρ
′ |2) = 0

}
and the isopayoff line of firm

2 that passes through (φ
′
, ρ
′
), i.e.,

{
(φ, ρ)|πe2(φ, ρ|2)− πe2(φ

′
, ρ
′ |2) = 0

}
. It follows that

there exists another interior point (φ
′′
, ρ
′′
), where φ

′′
< φ

′
and ρ

′′
> ρ

′
, between the

two isopayoff lines that makes both firms strictly better off and hence strictly increases

W (φ, ρ|2). Therefore, the NB solution must be on the vertical axis. By substituting φ = 0

into W (φ, ρ|2), it follows that

φ̂(2) = 0 and ρ̂(2) =
2(c− 1)

2c+ 1
. (19)

Given c = 3
2 , we find that ρ̂(2) = 1

4 as depicted by point NB in Figure 3a.
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Now consider the TIOLI solution. As we see in the NB regime, PC2 and PC3 are

identical as given by (18), and illustrated in Figure 3a for c = 3
2 . We find that firm 1’s

payoff-maximizing (φ, ρ) lies at the top corner of the feasible region. This corner solution

can be understood intuitively. Note that firm 1’s payoff πe1(φ, ρ|2) linearly increases with

both φ and ρ. Thus, firm 1 would set φ and ρ as great as possible while guaranteeing the

other firms just the minimum level of payoff as much as they reluctantly accept the offer,

i.e., autarky payoff πa2 . In other words, firm 1 would choose a (φ, ρ) on PC2. Since PC2 is

steeper than the isopayoff line of firm 1, firm 1 would set the value of φ as low as possible

and instead increase the value of ρ to the maximum along PC2. It follows that

φ̃(2) = 0 and ρ̃(2) =
4(c+ 2)(c− 1)

(2c+ 1)2
. (20)

Given c = 3
2 , we find that ρ̃(2) = 7

16 as depicted by point TIOLI in Figure 3a.

We plot the contingent fees according to the NB and TIOLI solutions for all values

of c > 1 in Figure 3b. Note that the fixed fee is always zero under both NB and TIOLI

regimes and the contingent fees is always lower under NB than under TIOLI.

5.2 The case m ≤ n− 2

In this case, the network is incomplete bipartite. Since there is at least one firm that is

not in the coalition, we have to take into account whether these firms will be active or

not in equilibrium for a given ρ to be chosen in stage 2. We find that the NB and TIOLI

solutions depend on the ranges of both c and m. If at least half of the low-tech firms are

in the coalition with firm 1, i.e.,m ≥ n−1
2 , then the critical value of c (making the firms

that do not belong to the coalition active or inactive in equilibrium) becomes n−m
n−m−1 . If

less than half of the low-tech firms are in the coalition with firm 1, i.e.,m < n−1
2 , then that

critical value of c becomes m+1
m .5 When c is lower than the threshold of each case, all firms

are active and we can derive the NB and TIOLI solutions in the same way we did when

m = n−1, except that the equality participation constraints of the firms are nonlinear when

5The critical values of c for given m = 1 and m = n− 2 are equal, those for given m = 2 and m = n− 3
are equal, and so on.
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m ≤ n− 2. While the results for this case are conceptually similar to the case m = n− 1,

the expressions of the bargaining solutions are not compact and, for some given values of c

and m, are not explicitly presentable. Therefore, we only include the results for the given

c larger than the threshold in the following proposition, and present the rest of the results,

i.e., when c is smaller than the threshold, in the proof of the proposition.

Proposition 3 Suppose that an incomplete bipartite network is formed in stage 1 and

c ≥ č(m,n) where

č(m,n) ≡ max

{
m+ 1

m
,

n−m
n−m− 1

}
. (21)

1. The Nash Bargaining solution in a subgame starting in stage 2, given m ≤ n− 2, is

φ̂(m) =
[(n− 1)c− n+ 2]2 − 1

[(n− 1)c+ 1]2(m+ 1)
− ρ̂(m)

m+ 1
(22)

and

ρ̂(m) = 1− m+ 1

mc
. (23)

2. The TIOLI solution in a subgame starting in stage 2, given m ≤ n− 2, is

φ̃(m) =
[(c− cρ̃(m)− 1)(n−m− 1) + 1− ρ̃(m)]2

[(n−m− 1)c+m+ 1]2(1− ρ̃(m))
− 1

[(n− 1)c+ 1]2
(24)

and

ρ̃(m) = 1− m+ 1

mc
. (25)

Proof. See Appendix A.3.

Contrasting the bargaining solutions presented in Proposition 2 where φ̃(m) = φ̂(m) = 0

and ρ̃(m) > ρ̂(m) > 0, Proposition 3 suggests that, given m ≤ n− 2 and c ≥ č(m,n), then

φ̃(m) > φ̂(m) > 0 and ρ̃(m) = ρ̂(m) ≥ 0. Note that by substituting ρ with ρ̂(m) given

by (23) or ρ̃(m) given by (25) into (10), we have c̄(ρ|m) = c. Thus, the value of ρ in the

licensing fee solutions (regardless of NB or TIOLI) will be the maximum value that keeps

firm 1’s technology radical with respect to any given c ≥ č(m,n) and any m ∈ {1, ..., n−2}

chosen in stage 1. In other words, the contingent fee derived in Proposition 3 is the highest
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value of ρ that can deter all the firms outside of the coalition from competing in the contest.

Since the contingent rates for the two bargaining concepts are identical and firm 1 has more

bargaining power under TIOLI, it is intuitive to find that φ̃(m) > φ̂(m).

Example: n = 3

Given n = 3, we find that č(1, 3) = 2. Given c ≥ 2, then only firms 1 and 2 participate.

Given m = 1 case (ii) of Table 1, PC1 and PC2 are represented by

PC1 : ρ =
(6c− 1)(2c− 3)

3(2c+ 1)2
− 4

3
φ (26)

and

PC2 : ρ =
(2c+ 3)(2c− 1)

(2c+ 1)2
− 4φ (27)

where ρ ≤ c−2
c . Thus, we have a linear and negative relationship between φ and ρ for both

PC1 and PC2. Following the approach for the case m = 2 discussed above, we find that

an interior point between PC1 and PC2 cannot be a solution. In fact, we find that the NB

solution is such that ρ = c−2
c and the optimal value of φ that maximizes W (φ, ρ|1) given

ρ = c−2
c . It follows that

φ̂(1) =
7c+ 2

2c(2c+ 1)2
and ρ̂(1) =

c− 2

c
. (28)

We show the feasible region for c = 3 in Figure 4. The region above the dashed line

corresponds to contest equilibria where all three firms compete as in case (i). The region

on and below the dashed line corresponds to contest equilibria where only firm 1 and firm

2 compete as in case (ii). The NB solution is
(

23
294 ,

1
3

)
as depicted by point NB in Figure 4

Next, we analyze the TIOLI solution. Given c ≥ 2, firm 3 will not participate in the

contest. Firm 1 will choose (φ, ρ) on PC2, i.e., φ(ρ) = (1−ρ)
4 − 1

(2c+1)2
, that maximizes firm

1’s expected payoff. It follows that

φ̃(1) =
4c2 + 2c+ 1

2c(2c+ 1)2
and ρ̃(1) =

c− 2

c
. (29)
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Figure 4: NB and TIOLI licensing fees given n = 3 and m = 1 when c = 3. If c > 2,
then there exists a threshold value of ρ > 0, depicted by the dashed line, such that firm
3 will stay in (or leave) the competition whenever the license fee combination is above (or
on/below) the dashed line.

Given c = 3, we find that φ̃ = 43
294 and ρ̃(1) = 1

3 as depicted by point TIOLI in Figure 4.

For the sake of completeness, we plot φ̂(1), φ̃(1), ρ̂(1), and ρ̃(1) on c for all c > 1 in

Figure 5. See the derivation of φ̃(1), ρ̂(1), and ρ̃(1) given c ∈ (1, 2) in Appendix A.3.

We find that φ̂(1) ≤ φ̃(1) and ρ̂(1) ≤ ρ̃(1) for all c. Specifically, ρ̂(1) < ρ̃(1) whenever

φ̂(1) = φ̃(1), and φ̂(1) < φ̃(1) whenever ρ̂(1) = ρ̃(1).

6 Coalition in Stage 1

In this section, we use the bargaining solutions obtained in stage 2 to derive an optimal

network structure represented by the value of m chosen by firm 1 in stage 1. In the previous

section, we present the bargaining solutions given m = n−1 and c > 1 in Proposition 2, and

given m ≤ n− 2 and c ≥ č(m,n) in Proposition 3. As we show in the proof of Proposition

3, for a given m ≤ n − 2, there is a range c (near 1) such that the bargaining solution

cannot be expressed explicitly. Therefore, to derive an optimal value of m for any n and

any c > 1, a numerical approach is necessary. In this section, our focus is on the case

c ≥ 2, not only because the results can be explicitly derived, but also because it has an
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Figure 5: NB and TIOLI licensing fees given n = 3 and m = 1

implication on entry deterrence. In particular, we find that c ≥ 2 is a necessary condition

for entry deterrence to occur in equilibrium given any n ≥ 3.

For the sake of completeness, we demonstrate how to derive an optimal network given

any c > 1 for the cases n = 3 and n = 4. We conclude this section by examining whether

the derived network structures are stable by allowing firms in the coalition to drop out

after learning the license fee at the end of stage 2.

6.1 Equilibrium network

Let m̂(n) and m̃(n) be firm 1’s optimal choices of m given n in the subgame perfect

equilibrium under NB and TIOLI regimes, respectively. First, we present the result given

c ≥ 2. Then, we discuss the case given c ∈ (1, 2) and n = 3, 4.

Proposition 4 Suppose c ≥ 2.

1. Under NB regime,

m̂(n) =


n− 1 if n = 3, 4

1 if n ≥ 5.

(30)

2. Under TIOLI regime, m̃(n) = n− 1 for all n ≥ 3.
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Proof. See Appendix A.4.

Firm 1 is facing the licensing dilemma in stage 1 of the game. As it increases the

number of licensees, income from licensing rises while its competitive advantage diminishes.

Given c ≥ 2 ≥ č(m,n), Remarks 2 and 3 suggest that firms outside the coalition will not

participate in the contest and each firm in the coalition will have an equal probability of

winning the competition. Thus, given m ∈ {1, ...n − 1}, firm 1’s probability of winning is

1
m+1 .

Under NB regime, each firm in the coalition has equal bargaining power. As the coalition

expands, we find that firm 1’s expected payoff decreases as m increases from 1 to n − 2.

Since m = 2, ..., n − 2 are strictly dominated, there are only two candidates left for the

optimal value of m, i.e., 1 and n−1. For m = 1, firm 1 can collect a license fee from its one

and only licensee while deter all other firms from competing. For m = n − 1, firm 1 can

collect license fees from n− 1 licensees while no firm is deterred from the competition. We

find from Proposition 4 that the entry-deterring effect dominates the revenue effect if and

only if n ≥ 5. That is, when n ≥ 5, firm 1 will form a coalition with only one other firm

and deter n− 2 firms from entering the contest. As a result, the probability of winning for

firm 1 becomes 1
2 . When n = 3 or 4, firm 1 will form a coalition with all other firms and

every firm will remain in the competition with an equal probability of winning (i.e., 1
3 for

n = 3 and 1
4 for n = 4).

Under TIOLI regime, firm 1 faces a similar dilemma. However, because it is the only

firm that has bargaining power, it can keep increasing φ and ρ as long as the expected

payoff of its licensees is not lower than in autarky. Proposition 4 suggests that the revenue

effect dominates the entry-deterring effect for all n ≥ 3, so firm 1 will choose m = n − 1

and form a grand coalition in equilibrium.

Based on the above results regarding firm 1’s radical technology, we find that from the

social welfare aspect, the outcome is a Pareto improvement under the TIOLI regime. Even

though firm 1 takes advantage of the TIOLI offer, no firm is made worse off. In contrast,

under NB, firm 1’s relative bargaining power declines as the coalition expands. As a result,

the marginal revenue from an increase in m is offset by the reduction in the probability
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of winning. When the number of firms is five or more, firm 1 will have only one licensee

and deter all other firms from participating. While firm 1 and the licensee are better off,

all other firms are made worse off. At a glance, equalizing all the firms’ status in the

bargaining within the coalition may seem desirable for all technology recipients. However,

if the advanced firm can determine the size of the coalition, it may form a technology cartel

that leads to a duopoly outcome in the competition. An intervention by a policymaker

or the contest organizer may be necessary to facilitate technology diffusion or to level the

playing field. For example, if the advanced firm is sufficiently compensated, it will be

willing to share its technology with all other firms and, as a result, every firm has an equal

chance of winning in equilibrium.

Finally, we focus on the case of a small contest where n ∈ {3, 4} with c ∈ (1, 2). We

compare firm 1’s expected payoffs given all possible values of m, i.e., m = 0, 1, 2 for n = 3

and m = 0, 1, 2, 3 for n = 4. Given c close to 1, we can not explicitly derive the solution for

the license fee or firm 1’s expected payoff so we need to rely on a numerical analysis. We

find that regardless of the concepts determining the licensing fee, NB or TIOLI solution,

firm 1 will form a complete bipartite network in stage 1.

Proposition 5 Given c ∈ (1, 2) and n ∈ {3, 4}, then m̂(n) = m̃(n) = n− 1.

Proof. See Appendix A.5.

In a small contest, under either NB or TIOLI regime, it is best for firm 1 to keep all

other firms in the coalition for any c > 1. The benefit from leaving one or two firms out

of the coalition (and letting them compete with the inferior technology or stay out of the

competition) does not outweigh the income loss of the license fee that firm 1 could have

collected from those firms, even under the NB regime.

6.2 Network stability

Up to this point, we assumed that firms join the coalition whenever their expected pay-

off after joining is greater than their autarky payoff and that the coalition breaks down

whenever one of the firms in the coalition rejects the proposed license fee. Now, instead
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of returning to autarky, we assume that if a firm in the coalition rejects the license fee, it

leaves the coalition, and the other firms remaining in the coalition renegotiate the license

contract. In this case, the game will proceed as illustrated in Figure 6.

1 2 3
firm 1

chooses m

license fee

bargaining

firms

invest

declare

the winner

a firm leaves

the coalition

Figure 6: The timeline of the game when a firm is allowed to leave the coalition after
learning the license fee

We formally define stability of the coalition as follows.

Definition 2 When a coalition Cm is formed and the licensing fee structure (φ(m), ρ(m))

is determined in stage 2, we say that the coalition is pairwise stable if

πem+1(φ(m), ρ(m)|m) ≥ πem+1(φ(m− 1), ρ(m− 1)|m− 1). (31)

The above definition coincides with the concept of pairwise stability in the economics

of network. We use firm m+ 1 as the representative firm for those who receive technology

from firm 1. We omit firm 1’s payoff conditions in the definition because firm 1 is the firm

that forms the coalition by choosing m in stage 1.

Proposition 6 Consider the coalition in equilibrium derived above.

1. Suppose c ≥ 2. The network structure in equilibrium under NB and TIOLI regimes

derived in Proposition 4 is pairwise stable.

2. Suppose c ∈ (1, 2) and n = 3, 4. The network structure in equilibrium under NB

regime derived in Proposition 5 is pairwise stable. The network structure in equilib-

rium under TIOLI regime derived in Proposition 5 is pairwise stable if and only if

c ≥ 2n−3
n−1 .

Proof. See Appendix A.6.
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The first result of Proposition 6 is intuitive. When firm 1’s technology is radical, leaving

the coalition means not participating in the competition and receiving no payoff at all. The

consequence of leaving the coalition is worse than being in autarky, so any coalition formed

when c ≥ 2 will be stable. In contrast, when n ≤ 4 and c is small enough, it is possible

for the coalition to be unstable under TIOLI. Since firm 1’s technology is not radical, firms

that left the coalition can still compete using their inferior technology. After firm 1 has

revised the license fee by making a TIOLI offer to the firms that remain in the coalition,

the high contingent fee cannot deter the firms that left the coalition from competing and,

as a result, it is possible for those firms to be made better off than in autarky. We find

that this unstable outcome can occur under TIOLI given n ∈ {3, 4} when c < 2n−3
n−1 .

7 Conclusion

In this paper, we theoretically model an R&D competition in which one of the firms pos-

sesses an advanced technology that can be licensed out to its competitors. In return, each

of the technology recipients pays the technology leader a two-part tariff consisting of fixed

and contingent components. We use Tullock’s contest as the underlying mechanism in

determining the R&D winner while allowing for an endogenous licensing coalition and fee

structure. We find that a coalition always exists in equilibrium, while the coalition network

structure depends on the total number of firms, the bargaining power of licensor, and the

significance of the technology.

This is the first paper that analyzes technology licensing structure and fee in the canoni-

cal R&D contest model. We allow for endogenous licensing structure and fee determination.

We relate each firm’s bargaining power and the significance of the licensed technology to the

network structure and the license fee in equilibrium. Using the Nash bargaining concept,

we find that the advanced technology is shared with all the firms if the number of compet-

ing firms is less than five and shared with only one other firm if the number of competing

firms is at least five and the technology is radical. If the advanced firm plays a take-it-

or-leave-it strategy, it will always form a grand coalition and share its technology with all

other firms. Thus given a radical technology and the number of firms of five or more, the
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equilibrium outcome under the take-it-or-leave-it regime is a Pareto improvement, while

the equilibrium outcome under the Nash bargaining regime is not.

Our theory implies that when the license fee structure does not provide the advanced

firm with sufficient compensation, the firm may strategically form a small technology cartel

to deter other firms not in the cartel from competing. Our theory also suggests that by

sharing its technology with all other firms, there would be no advantage in the competition

(i.e., each firm would have an equal probability of winning), while the advanced firm would

receive a higher expected payoff than do the technology recipients. A key assumption of

our model is that the winner-selection process is described by an imperfectly discriminating

contest success function. That is why the advanced firm has an incentive to share its

technology with rival firms through the license contract. So, this nature of competition,

i.e., the strongest firm is not always the winner in R&D contest, can be thought of as one

of the key motivations for open innovation. In such a situation, players strategically share

their skills and knowledge, and consequently reach a mutually beneficial point. This series

of interactions between the players is being implemented in the process of open innovation.

Since this is the first theoretical study of licensing R&D technology in Tullock’s con-

test, there are many directions to extend our framework for future research. One might

investigate a contest where the contest organizer can choose the license fee and use it to

manipulate the outcome of the contest. Due to the uncertainty in the R&D competition,

one might also examine the effects of risk attitudes on a firm’s decision to license out or

license in.
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A Proofs

A.1 Proof of Proposition 1

The first-order conditions for an interior solution of all the firms (i.e., all firms participate

in the contest) are given by

X − x1
X2

R−
m+1∑
i=2

xi
X2

ρR− 1 = 0, (32)

X − xi
X2

(1− ρ)R− 1 = 0, for i = 2, ...,m+ 1 (33)

X − xi
X2

R− c = 0, for i = m+ 2, ..., n. (34)

which imply the following share functions

s1(X) = 1− ρ
m+1∑
i=2

si(X)− X

R
, (35)

si(X) = 1− X

(1− ρ)R
, for i = 2, ...,m+ 1 (36)

si(X) = 1− cX

R
, for i = m+ 2, ..., n (37)

whenever si(X) > 0. Note that s1(X) is conditional on si(X) for i = 2, ...,m+1. It follows

that

s1(X) =


1−mρ−

[
1− mρ

1−ρ

]
X
R if X < (1− ρ)R

1− X
R if (1− ρ)R ≤ X < R

0 if X ≥ R,

(38)

si(X) =


1− X

(1−ρ)R if X < (1− ρ)R

0 if X ≥ (1− ρ)R,

(39)

for i = 2, ...,m+ 1, and

si(X) =


1− cX

R if X < R
c

0 if X ≥ R
c ,

(40)
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for i = m+2, ..., n. Let us denote firm i’s participation threshold by κi. According to si(X)

derived above, κ1 = R, κi = (1− ρ)R for i = 2, ...,m+ 1, and κi = R
c for i = m+ 2, ..., n.

Given ρ ∈ [0, 1] and c > 1, we have three possible cases.

Case 1. κ1 ≥ κ2 = ... = κm+1 > κm+2 = ... = κn. It follows that

S(X) :=
n∑
i=1

si(X) =



n−mρ− [m+1+(n−m−1)c]X
R if X < R

c

m+ 1−mρ− (m+1)X
R if R

c ≤ X < (1− ρ)R

1− X
R if (1− ρ)R ≤ X < R

0 if X ≥ R.

(41)

Since S(X) is continuous given X ≥ 0, S(X) > 1 given X = 0 and S = 0 given X ≥ R,

and S(X) is strictly decreasing given X ∈ (0, R), there exists a unique equilibrium where

S(X) = 1 if S(X) is strictly decreasing in X for all X ∈ (0, R). There are two possible

subcases.

Subcase 1.1. All firms participate in equilibrium. Setting S(X) = 1 yields Xe as in

Case (i) of Proposition 1.

Subcase 1.2. Only firms 1, ...,m participate in the contest. If firms m+ 2, ..., n, do not

participate, si(X) = 0 for i = m + 2, ..., n, and the condition S(X) = 1 implies Xe as in

Case (ii) of Proposition 1. We find that Xe ≥ R
C if and only if ρ ≤ mc−m−1

mc .

Case 2. κ1 > κm+2 = ... = κn > κ2 = ... = κm+1. It follows that

S(X) :=

n∑
i=1

si(X) =



n−mρ− [m+1+(n−m−1)c]X
R if X < (1− ρ)R

n−m− [1+(n−m−1)c]X
R if (1− ρ)R ≤ X < R

c

1− X
R if R

c ≤ X < R

0 if X ≥ R.

(42)

Since S(X) is continuous given X ≥ 0, S(X) > 1 given X = 0 and S = 0 given X ≥ R,

and S(X) is strictly decreasing given X ∈ (0, R), there exists a unique equilibrium where

S(X) = 1 if S(X) is strictly decreasing in X for all X ∈ (0, R). There are two possible
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subcases.

Subcase 2.1. All firms participate in equilibrium. Setting S(X) = 1 yields Xe as in

Case (i) of Proposition 1.

Subcase 2.2. Only firms 1,m+2, ..., n participate in the contest. If firms 2, ...,m+1, do

not participate, si(X) = 0 for i = 2, ...,m+1, and the condition S(X) = 1 implies Xe as in

Case (iii) of Proposition 1. We find that Xe ≥ (1− ρ)R if and only if ρ ≥ (n−m−1)(c−1)+1
(n−m−1)c+1 .

Case 3. κ1 > κ2 = ... = κn. It follows that all firms participate in equilibrium and

setting S(X) = 1 yields Xe as in Case (i) of Proposition 1.

A.2 Proof of Proposition 2

In autarky, each firm’s expected payoff in equilibrium can be written as

πa1 =

[
1− (n− 1)

(n− 1)c+ 1

]2
R, (43)

πai =

[
1− (n− 1)c

(n− 1)c+ 1

]2
R, (44)

where i = 2, ..., n. Given that a coalition with m = n − 1 is formed, each firm’s expected

payoff in equilibrium can be written as

πe1(φ, ρ|m) =

{(
1− Xe

R

)2

+mρ

[
1− Xe

(1− ρ)R

]
Xe

R
+mφ

}
R (45)

πei (φ, ρ|m) =

{[
1− Xe

(1− ρ)R

]2
(1− ρ)− φ

}
R (46)

where i = 2, ..., n, and Xe is given by (7).

NB solution

Given m = n− 1, the NB solution solves the following problem.

max
φ,ρ

W (φ, ρ|n− 1) = [πe1(φ, ρ|n− 1)− πa1 ][πei (φ, ρ|n− 1)− πai ]n−1

s.t. πe1(φ, ρ|n− 1)− πa1 ≥ 0, and πei (φ, ρ|n− 1)− πai ≥ 0 for i = 2, ..., n, (47)
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with 0 ≤ φ ≤ 1 and 0 ≤ ρ ≤ 1. Define PC1 ≡ {(φ, ρ)|πe1(φ, ρ|n− 1)− πa1 = 0} and PCi ≡

{(φ, ρ)|πei (φ, ρ|n− 1)− πai = 0} for i = 2, ..., n. Then, PC1 and PCi can be represented on

the (φ, ρ) plane as

PC1 : ρ =
(n− 1)(c− 1)[c(n+ 1)(n− 1)− n2 + 2n+ 1]

(n+ 1)[c(n− 1) + 1]2
− n2

n+ 1
φ, (48)

PCi : ρ =
(n− 1)(c− 1)[c(n− 1) + n+ 1]

[c(n− 1) + 1]2
− n2φ. (49)

We find that the intersection of PC1 and PCi uniquely exists in the first quadrant of the

(φ, ρ) plane. It follows that the feasible set of (φ, ρ) for the problem in (47) is a triangular

region of the (φ, ρ) plane bordered by PC1, PCi, and the vertical axis (φ = 0). Since PC1

is flatter than PCi as shown in (48) and (49), we find that any (φ, ρ) in the feasible region

with φ > 0 does not maximize W because W increases as φ decreases and ρ increases at

a substitution rate between n2

n+1 and n2. Therefore, φ̂(n − 1) = 0. By substituting φ = 0

into W (φ, ρ|n− 1) and maximizing it by choosing ρ, we obtain ρ̂(n− 1) as in (15).

TIOLI solution

Since πe1(φ, ρ|n − 1) increases in φ and ρ, firm 1 will choose (φ, ρ) on PCi represented by

(49) that maximizes πe1(φ, ρ|n − 1). Firm 1’s marginal rate of substitution for a 1 unit

decrease in φ is n2 units increase in ρ which is larger than n2

n+1 that is needed by firm i to

stay on PCi. Therefore, firm 1 chooses φ̃(n− 1) = 0 and (49) implies that ρ̃(n− 1) is given

by (16).

A.3 Proof of Proposition 3

Proposition 3 presents special cases (i-c and ii-b) of Proposition 7 (NB solutions) and

Proposition 8 (TIOLI solutions) below.

Proposition 7 Given m ∈ {1, ..., n− 2} determined in stage 1, the Nash Bargaining solu-

tion uniquely exists in each of the following cases in stage 2.

(i) If n−1
2 ≤ m < n− 1, we have:
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(a) For c ≤ τ ,

φ̂(m) = 0 and ρ̂(m) = arg max
ρ
W (0, ρ|m).

(b) For τ < c < n−m
n−m−1 ,

φ̂(m) = 1
m+1

{
[(n−1)c−n+2]2−1

[(n−1)c+1]2
+ [(n−m−1)c−n+m+2]2[m+1−(n−m−1)c][m2−mn+2m+2−(m+2)(n−m−1)c]

4mc(n−m−1)[(n−m−1)2c2+(n−m−1)(2m−n+1)c−(m+1)(m−n+2)]

}
,

ρ̂(m) =
[c(n−m− 1)− (n−m− 2)][m+ 1− c(n−m− 1)]

2cm(n−m− 1)
,

and τ is the value of c such that φ̂(m) = 0.

(c) For c ≥ n−m
n−m−1 ,

φ̂(m) =
1

m+ 1

{
[(n− 1)c− n+ 2]2 − 1

[(n− 1)c+ 1]2
− ρ̂(m)

}
and ρ̂(m) =

mc−m− 1

mc
.

(ii) If 1 ≤ m < n−1
2 , we have:

(a) For c < m+1
m ,

φ̂(m) =
[(n− 1)c− n+ 2]2 − 1

(m+ 1)[(n− 1)c+ 1]2
and ρ̂(m) = 0.

(b) For c ≥ m+1
m ,

φ̂(m) =
1

m+ 1

{
[(n− 1)c− n+ 2]2 − 1

[(n− 1)c+ 1]2
− ρ̂(m)

}
and ρ̂(m) =

mc−m− 1

mc
.

Proof. Given m+1 firms in the coalition and m ≤ n−2, there are n−m−1 ≥ 1 firms not

in the coalition. We consider two cases where these n−m− 1 firms are active and inactive

in equilibrium. By defining ρ̄ ≡ mc−m−1
mc , we know from Proposition 1 that the firms not

in the coalition will be active (inactive) in equilibrium if ρ > (≤) ρ̄.

Case 1. Suppose that the NB solution has ρ > ρ̄. We can rewrite (45) and (46) as

πe1(φ, ρ|m) = F (ρ) +mφR (50)

πei (φ, ρ|m) = G(ρ)− φR, (51)
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where

F (ρ) ≡
(

1− Xe(ρ|m)

R

)2

R+mρ

[
1− Xe(ρ|m)

(1− ρ)R

]
Xe(ρ|m) (52)

G(ρ) ≡
[
1− Xe(ρ|m)

(1− ρ)R

]2
(1− ρ)R. (53)

Note that both πe1(φ, ρ|m) and πei (φ, ρ|m) are additively separable in terms of φ and ρ, and

linear in φ. Hence, we solve the maximization problem for W (φ, ρ|m) firstly with respect

to φ for a value of ρ given

W (φ, ρ|m) = [F (ρ) +mφR− πa1 ] [G(ρ)− φR− πai ]m . (54)

Differentiating W (φ, ρ|m) with φ and considering the non-negativity restriction on φ,

we have the following optimal φ for a given value of ρ:

φ(ρ) = max

{
1

m+ 1
[G(ρ)− F (ρ) + πa1 − πai ] , 0

}
1

R
, (55)

where the second-order condition for a maximum is met. Next, substituting strictly positive

φ(ρ)R into W (φ, ρ|m), we have

W (φ(ρ), ρ|m) =
1

(m+ 1)m+1
[F (ρ) +mG(ρ)− πa1 −mπai ]m+1 . (56)

Note that the participation constraints for firms 1, ...,m + 1 guarantee non-negativity

of the inside of the bracket in (56), and thus maximizing W (φ(ρ), ρ|m) is equivalent to

maximizing the inside of the bracket in (56). The bargaining problem is then reduced to

max
ρ
F (ρ) +mG(ρ)− πa1(c)−mπai . (57)

From the first-order condition for a maximum, we obtain the critical value of ρ:

ρ∗ =
[c(n−m− 1)− (n−m− 2)][m+ 1− c(n−m− 1)]

2cm(n−m− 1)
, (58)
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where the second-order condition for the maximum is met, and derive φ̂(m) from (55).

We now check whether ρ∗ meets the condition ρ > ρ̄ so all firms are active in equilibrium.

Since the values of ρ∗ and ρ̄ depend on n and m, we consider the following three possible

subcases: m = n−1
2 , m < n−1

2 , and m > n−1
2 .

Subcase 1.1. m = n−1
2 . In this case, m+1

n−m−1 = m+1
m = n−m

n−m−1 holds. If c < n−m
n−m−1 ,

then we have ρ∗ > 0 > ρ̄. Since ρ∗ meets the condition ρ > ρ̄ and the non-negativity

condition, ρ̂(m) = ρ∗. If c = n−m
n−m−1 , then we have ρ∗ = ρ̄ = 0. If c > n−m

n−m−1 , then we

have ρ̄ > 0 > ρ∗. The zero value of ρ (the boundary value) cannot be the solution either,

because ρ̄ ≥ 0. Therefore, given c ≥ n−m
n−m−1 , a NB solution that makes all firms active in

in equilibrium does not exist.

Subcase 1.2. m > n−1
2 . In this case, m+1

m < n−m
n−m−1 <

m+1
n−m−1 holds. If c < n−m

n−m−1 , then

we have ρ∗ > ρ̄ and ρ∗ > 0 so ρ̂(m) = ρ∗. If c ≥ n−m
n−m−1 , then we have ρ∗ ≤ ρ̄ and ρ̄ > 0,

which means that neither ρ∗ nor the zero value of ρ can be the solution.

Subcase 1.3. m < n−1
2 . In this case, m+1

n−m−1 <
n−m
n−m−1 <

m+1
m holds. If c ≤ m+1

n−m−1 , then

we have ρ∗ ≥ 0 > ρ̄ so ρ̂(m) = ρ∗. However, this case can be ignored because m+1
n−m−1 < 1

which implies c < 1. If m+1
n−m−1 < c < m+1

m , then we have ρ∗ < 0 and ρ̄ < 0, which

means that the zero value of ρ can be the bargaining solution. If c ≥ m+1
m , then we have

ρ∗ < 0 ≤ ρ̄. In this case, the zero value of ρ cannot be the solution. Hence, for c ≥ m+1
m ,

the solution of ρ that makes all firms active doesn’t exist.

The above analysis is under the presumption that φ(ρ) in (55) is strictly positive. If

φ(ρ) = 0 due to a small value of c, we can find the solution of ρ by solving the maximization

problem of W (φ(ρ) = 0, ρ|m) by choosing ρ. In this case, we can derive ρ̂(m) by solving a

5th-degree polynomial numerically.

Case 2. Suppose that the NB solution has ρ ≤ ρ̄. This problem is akin to the case

m = n− 1 because only the firms in the coalition are active in equilibrium. It follows that

PC1 and PCi are linear and downward sloping, they intersect in the first quadrant, and

PC1 is flatter than PCi. The feasible region of (φ, ρ) is the area bordered by PC1, PCi,

the vertical axis, and the horizontal line ρ = ρ̄. Like the case m = n− 1, any interior point

in the feasible region cannot be the solution. Thus, the NB solution is either on the vertical

axis (φ = 0) or on the horizontal line (ρ = ρ̄). Given φ = 0, we find that the optimal ρ
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that maximizes W is

ρ0 =
(n− 1)2(m+ 2)c2 − 2(n− 1)(mn− 2m+ n− 3)c+mn2 −m2 − 4mn+ n2 +m− 4n+ 3

(m+ 2)[c(n− 1) + 1]2
. (59)

Given ρ = ρ̄, we find that the optimal φ that maximizes W is

φ̄ =
1

m+ 1

{
[(n− 1)c− n+ 2]2 − 1

[(n− 1)c+ 1]2
− ρ̄
}
. (60)

Since W (φ̄, ρ̄) > W (0, ρ0) for any m ≤ n− 2, and c > 1, then φ̂(m) = φ̄ and ρ̂(m) = ρ̄.

Proposition 8 Given m ∈ {1, ..., n−2} determined in stage 1, the TIOLI solution uniquely

exists in each of the following cases in stage 2.

(i) If n−1
2 ≤ m < n− 1, we have:

(a) For c ≤ κ,

φ̃(m) = 0 and ρ̃(m) = ρ such that πei (0, ρ|m) = πai .

(b) For κ < c < n−m
n−m−1 ,

φ̃(m) = φ∗∗ and ρ̃(m) =
[c(n−m− 1)− (n−m− 2)][m+ 1− c(n−m− 1)]

2cm(n−m− 1)
,

where

φ∗∗ ≡ [(c− cρ̃(m)− 1)(n−m− 1) + 1− ρ̃(m)]2

[(n−m− 1)c+m+ 1]2(1− ρ̃(m))
− 1

[(n− 1)c+ 1]2

and κ is the value of c such that φ∗∗ = 0.

(c) For c ≥ n−m
n−m−1 ,

φ̃(m) = φ∗∗ and ρ̃(m) =
mc−m− 1

mc
.

(ii) If 1 ≤ m < n−1
2 , we have:
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(a) For c < m+1
m ,

φ̃(m) = φ∗∗ and ρ̃(m) = 0.

(b) For c ≥ m+1
m ,

φ̃(m) = φ∗∗ and ρ̃(m) =
mc−m− 1

mc
.

Proof. Since we know from Proposition 1 that the firms not in the coalition will be active

(inactive) in equilibrium if ρ > (≤) ρ̄, we consider the two cases below.

Case 1. Suppose that the TIOLI solution has ρ > ρ̄. We rewrite πe1 and πei for

i = 2, ...,m + 1 as in (50) and (51) respectively. Since firm 1 chooses (φ, ρ) on PCi to

extract maximum surplus from each recipient firm, we have πei (φ, ρ|m) = πai , i.e.,

φ(ρ) = max {0, G(ρ)− πai }
1

R
. (61)

Substituting strictly positive φ(ρ) into πe1(φ, ρ|m) in (50), we have

πe1(φ, ρ|m) = F (ρ) +mG(ρ)−mπai (c). (62)

Since F (ρ) + mG(ρ) is a common component in both (62) and (57), the optimal value of

ρ for the TIOLI offer is the same as the value of ρ in the NB solution. Therefore, we have

ρ̃(m) = ρ∗ as in (58) and derive φ̃(m) from (61).

The above analysis is under the presumption that φ(ρ) in (61) is strictly positive. If

φ(ρ) = 0 due to a small value of c, we can numerically derive the solution of ρ by solving

for the value of ρ on PCi given φ = 0

Case 2. Suppose that the TIOLI solution has ρ ≤ ρ̄. The optimal value of ρ for the

TIOLI solution making the (n−m− 1) firms not in the coalition inactive in stage 3 exists

only when m ≥ n−1
2 and c ≥ n−m

n−m−1 or m < n−1
2 and c ≥ m+1

m . Firm 1’s problem becomes

akin to the case m = n−1 because only the firms in the coalition are active in equilibrium.

It follows that PCi is linear and downward sloping, and that firm 1 chooses (φ, ρ) on PCi

such that ρ = ρ̄.
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A.4 Proof of Proposition 4

NB regime

Given c ≥ 2, Propositions 2 and 3 imply that firm 1’s expected payoffs can be written as:

π̂1(m) =


n(n−1)2c2−2(n−1)(n2−3n+1)c+n3−6n2+8n−2

n[c(n−1)+1]2
R if m = n− 1

1
m+1

{
c−1
c + m[c(n−1)−n+2]2−m

[c(n−1)+1]2

}
R if 1 ≤ m ≤ n− 2,

(63)

where π̂1(m) ≡ πe1(φ̂(m), ρ̂(m)|m).

Given m = 1, ..., n− 2, we find that

∂π̂1(m)

∂m
=

1

(m+ 1)2

{
(n− 1)2 − 2[c(n− 1) + 1](n− 1)

[c(n− 1) + 1]2
− 1

c

}
R < 0 (64)

if and only if

f(c, n) ≡ 3c2(n− 1)2 − c(n− 1)(n− 5) + 1 > 0. (65)

Suppose n ≥ 5. Since f(2, 5) > 0, ∂f(c,n)
∂c > 0, and ∂f(c,n)

∂n > 0 for all c ≥ 2 and n ≥ 5,

we have ∂π̂1(m)
∂m < 0 given c ≥ 2 and n ≥ 5.

We also find that π̂1(n− 1) < π̂1(1) if and only if

h(c, n) ≡ (n− 4)(n− 1)2c2 − (n− 2)(n2 − 4n+ 2)c− n > 0. (66)

Since h(2, 5) > 0, ∂h(c,n)
∂c > 0, and ∂h(c,n)

∂n > 0 for all c ≥ 2 and n ≥ 5, we have h(c, n) > 0

given c ≥ 2 and n ≥ 5, i.e., π̂1(n− 1) < π̂1(1) for all c ≥ 2 and n ≥ 5. Therefore, firm 1’s

decision in stage 1 is m̂(n) = 1 for n ≥ 5.

Suppose n = 4. Since f(2, 4) > 0 and ∂f(c,4)
∂c > 0 for all c ≥ 2, we have ∂π̂1(m)

∂m < 0

for given c ≥ 2 and m ≤ 2. We also have h(c, 4) < 0 for all c ≥ 2, which means that

π̂1(3) > π̂1(1). Thus, m̂(4) = 3.

Finally, suppose n = 3. Since h(c, 3) < 0 for all c ≥ 2, we have π̂1(2) > π̂1(1). So,

m̂(3) = 2.
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TIOLI regime

Given c ≥ 2, Proposition 2 implies that firm 1’s expected payoffs can be written as:

π̃1(m) =


(n−1)2c2+2(n−1)c−n2+2

[c(n−1)+1]2
R if m = n− 1{

c−1
c −

m
[c(n−1)+1]2

}
R if 0 ≤ m ≤ m− 2,

(67)

where π̃1(m) ≡ πe1(φ̃(m), ρ̃(m)|m).

Given m = 1, ..., n− 2, we find that

∂π̃1(m)

∂m
= − 1

[c(n− 1) + 1]2
R < 0. (68)

We also find that π̃1(n− 1) > π̃1(1) if and only if

g(c, n) ≡ c2(n− 1)2 − cn(n− 2) + 1 > 0. (69)

Since g(2, 3) > 0, ∂g(c,n)
∂c > 0, and ∂g(c,n)

∂n > 0 for all c ≥ 2 and n ≥ 3, we have g(c, n) > 0,

i.e., π̃1(n− 1) > π̃1(1). Firm 1 thus chooses m̃(n) = n− 1.

A.5 Proof of Proposition 5

NB regime with n = 3

According to the NB solutions derived in Proposition 2 and in the proof of Proposition 3,

we have

(
φ̂(m), ρ̂(m)

)
=


(0, ρ∗(1)) if m = 1 and c ≤ 1.5334(
12c4−4c3−29c2+8c+4

8c(2c+1)2
, 2−c2

)
if m = 1 and c > 1.5334(

0, 2(c−1)
2c+1

)
if m = 2,

(70)
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where ρ∗(1) ≡ argmaxρW (0, ρ|1). Given the above license fees, firm 1’s expected payoff

can be written as

π̂1(m) =



(2c−1)2R
(2c+1)2

if m = 0

πe1(0, ρ∗(1)|1) if m = 1 and c ≤ 1.5334

c(4c2+20c−15)R
8(2c+1)2

if m = 1 and c > 1.5334

(6c−5)R
3(2c+1) if m = 2.

(71)

The top left panel of Figure 7 shows each firm 1’s expected payoff under NB for m ∈

{0, 1, 2}. Since π̂1(2) > π̂1(m) for m ∈ {0, 1} and for any given c ∈ (1, 2), then m̂(3) = 2 in

stage 1.

NB regime with n = 4

According to the NB solutions derived in Proposition 2 and in the proof of Proposition 3,

we have

(
φ̂(m), ρ̂(m)

)
=



(
3(3c−1)(c−1)

2(3c+1)2
, 0
)

if m = 1

(0, ρ∗(2)) if m = 2 and c < 1.8551(
18c4−15c3−25c2−25c+15

12(c+1)(3c+1)2
, 3−c4

)
if m = 2 and c > 1.8551(

0, 3(c−1)(15c+1)
5(3c+1)2

)
if m = 3,

(72)

where ρ∗(2) ≡ argmaxρW (0, ρ|2). Given the above license fees, firm 1’s expected payoff

can be written as

π̂1(m) =



(3c−2)2R
(3c+1)2

if m = 0

(54c4−35c2−10c+7)R
4(c+1)2(3c+1)2

if m = 1

πe1(0, ρ∗(2)|2) if m = 2 and c < 1.8551

(9c3+78c2−95c+24)R
12(3c+1)2

if m = 2 and c > 1.8551

(18c2−15c−1)R
2(3c+1)2

if m = 3.

(73)
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Figure 7: Firm 1’s expected payoff in equilibrium under NB (left) and TIOLI (right) for
n = 3 (top) and n = 4 (bottom).

The bottom left panel of Figure 7 shows each firm 1’s expected payoff under NB for

m ∈ {0, 1, 2, 3}. Since π̂1(3) > π̂1(m) for m ∈ {0, 1, 2} and for any given c ∈ (1, 2), then

m̂(3) = 3 in stage 1.
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TIOLI regime with n = 3

According to the TIOLI solutions derived in Proposition 2 and in the proof of Proposition

3, we have

(
φ̂(m), ρ̂(m)

)
=


(0, ρ∗∗(1)) if m = 1 and c ≤ 1.4376(
(2c−1)(2c3−c2−2c−1)

2c(2c+1)2
, 2−c2

)
if m = 1 and c > 1.4376(

0, 4(c+2)(c−1)
(2c+1)2

)
if m = 2,

(74)

where ρ∗∗(1) ≡ ρ such that πe2(0, ρ|1) = πa2 . Given the above license fees, firm 1’s expected

payoff can be written as

π̃1(m) =



(2c−1)2R
(2c+1)2

if m = 0

πe1(0, ρ∗∗(1)|1) if m = 1 and c ≤ 1.4376

[c(2c+1)2−4]R
4(2c+1)2

if m = 1 and 1.4376 < c < 2

(4c2+4c−7)R
(2c+1)2

if m = 2.

(75)

The top right panel of Figure 7 shows each firm 1’s expected payoff under TIOLI for

m ∈ {0, 1, 2}. Since π̃1(2) > π̃1(m) for m ∈ {0, 1} and for any given c ∈ (1, 2), then

m̃(3) = 2 in stage 1.

TIOLI regime with n = 4

According to the NB solutions derived in Proposition 2 and in the proof of Proposition 3,

we have

(
φ̃(m), ρ̂(m)

)
=



(
3(c−1)(c+1)(3c2+2c+3)

(c+3)2(3c+1)2
, 0
)

if m = 1

(0, ρ∗∗(2)) if m = 2 and c < 1.5628(
9c4−12c3−2c2−3
4(3c+1)2(c+1)

, 3−c4

)
if m = 2 and c > 1.5628(

0, 3(c−1)(3c+5)
(3c+1)2

)
if m = 3,

(76)
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where ρ∗∗(2) ≡ ρ such that πei (0, ρ|2) = πai for i = 2, 3. Given the above license fees, firm

1’s expected payoff can be written as

π̃1(m) =



(3c−2)2R
(3c+1)2

if m = 0

(36c4−12c3−13c2−2c−1)R
2(c+1)2(3c+1)2

if m = 1

πe1(0, ρ∗∗(2)|2) if m = 2 and c < 1.5628

(9c3+6c2+c−8)R
4(3c+1)2

if m = 2 and c > 1.5628

(9c2+6c−14)R
(3c+1)2

if m = 3.

(77)

The bottom right panel of Figure 7 shows each firm 1’s expected payoff under NB for

m ∈ {0, 1, 2, 3}. Since π̃1(3) > π̃1(m) for m ∈ {0, 1, 2} and for any given c ∈ (1, 2), then

m̃(3) = 3 in stage 1.

A.6 Proof of Proposition 6

Case 1: c ≥ 2

Under NB, Proposition 4 states that m̂(n) = 1. That is, firm 1 shares its technology only

with firm 2 and all other firms do not participate in the contest. Firm 2’s expected payoff

in equilibrium can be written as

π̂2(1) =
1

2

{
c− 1

c
− [c(n− 1)− n+ 2]2 − 1

[c(n− 1) + 1]2

}
R. (78)

Since π̂2(1) > πa2 , the equilibrium network structure m̂(n) = 1 is pairwise stable under NB.

Under TIOLI, Proposition 4 states that m̃(n) = n − 1. That is, firm 1 shares its

technology with all other firms and every firm participates in the contest. Firm i’s expected

payoff in equilibrium, for i = 2, ..., n, can be written as

π̃i(n− 1) =
1

[(n− 1)c+ 1]2
R = πai . (79)

Since firm 1’s technology is radical, π̃n(n − 2) = 0 < πan and, therefore, the equilibrium
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network structure m̃(n) = n− 1 is pairwise stable under TIOLI.

Case 2: c ∈ (1, 2) and n ∈ {3, 4}

Under either NB or TIOLI, Proposition 5 states that m̂(n) = m̃(n) = n− 1.

Given n = 3, we find that under NB

π̂3(m) =


πe3(0, ρ̂(1)|1) if m = 1 and 1 < c ≤ 1.5334

(2−c)2R
4 if m = 1 and 1.5334 < c < 2

R
3(2c+1) if m = 2.

(80)

As shown in the top left panel of Figure 8, π̂3(2) > π̂3(1) for all c ∈ (1, 2) so firm 3 does

not have an incentive to leave the coalition.

Given n = 4, we find that under NB

π̂4(m)


πe4(0, ρ̂(2)|2) if m = 2 and 1 < c ≤ 1.8551

(2−c)2R
4 if m = 2 and 1.8551 < c < 2

(9c+1)R
10(3c+1)2

if m = 3.

(81)

As shown in the bottom left panel of Figure 8, π̂4(3) > π̂4(2) for all c ∈ (1, 2) so firm 4

does not have an incentive to leave the coalition.

Given n = 3, we find that under TIOLI

π̃3(m) =


πe3(0, ρ̃(1)|1) if m = 1 and 1 < c ≤ 1.4376

(2−c)2R
4 if m = 1 and 1.4376 < c < 2

R
(2c+1)2

if m = 2.

(82)

As shown in the top right panel of Figure 8, π̃3(2) > π̃3(1) (i.e., firm 3 does not have an

incentive to leave the coalition) if and only if c ∈ (1.5, 2).

48



1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

m = 2

m = 1

m = 0

c

π̂
3

(a) π̂3(m)

1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

m = 1

m = 0, 2

c

π̃
3

(b) π̃3(m)

1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

m = 3

m = 2
m = 1

m = 0

c

π̂
4

(c) π̂4(m)

1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

m = 2

m = 1

m = 0, 3

c

π̃
4

(d) π̃4(m)

Figure 8: Firm n’s expected payoff in equilibrium under NB (left) and TIOLI (right) for
n = 3 (top) and n = 4 (bottom).

Given n = 4, we find that under TIOLI

π̃4(m) =


πe4(0, ρ̃(2)|1) if m = 2 and 1 < c ≤ 1.5628

(2−c)2R
4 if m = 2 and 1.5628 < c < 2

R
(3c+1)2

if m = 3.

(83)

As shown in the top right panel of Figure 8, π̃4(3) > π̃4(2) (i.e., firm 4 does not have an

incentive to leave the coalition) if and only if c ∈ (1.6667, 2).
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